The Delta 14 mutation of human cardiac troponin T enhances ATPase activity and alters the cooperative binding of S1-ADP to regulated actin.
نویسندگان
چکیده
The complex of tropomyosin and troponin binds to actin and inhibits activation of myosin ATPase activity and force production of striated muscles at low free Ca(2+) concentrations. Ca(2+) stimulates ATP activity, and at subsaturating actin concentrations, the binding of NEM-modified S1 to actin-tropomyosin-troponin increases the rate of ATP hydrolysis even further. We show here that the Delta14 mutation of troponin T, associated with familial hypertrophic cardiomyopathy, results in an increase in ATPase rate like that seen with wild-type troponin in the presence of NEM-S1. The enhanced ATPase activity was not due to a decreased incorporation of mutant troponin T with troponin I and troponin C to form an active troponin complex. The activating effect was more prominent with a hybrid troponin (skeletal TnI, TnC, and cardiac TnT) than with all cardiac troponin. Thus it appears that changes in the troponin-troponin contacts that result from mutations or from forming hybrids stabilize a more active state of regulated actin. An analysis of the effect of the Delta14 mutation on the equilibrium binding of S1-ADP to actin was consistent with stabilization of an active state of actin. This change in activation may be important in the development of cardiac disease.
منابع مشابه
A dilated cardiomyopathy troponin C mutation lowers contractile force by reducing strong myosin-actin binding.
In this study we explore the mechanisms by which a double mutation (E59D/D75Y) in cardiac troponin C (CTnC) associated with dilated cardiomyopathy reduces the Ca(2+)-activated maximal tension of cardiac muscle. Studying the single mutants (i.e. E59D or D75Y) indicates that D75Y, but not E59D, causes a reduction in the calcium affinity of CTnC in troponin complex, regulated thin filaments (RTF),...
متن کاملTwo Drosophila Myosin Transducer Mutants with Distinct Cardiomyopathies Have Divergent ADP and Actin Affinities*
Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that...
متن کاملGreen Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy-Associated Mutation in Human Cardiac Troponin I (K206I).
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3) and elucidate the mec...
متن کاملNegative charges at protein kinase C sites of troponin I stabilize the inactive state of actin.
Alterations in the troponin complex can lead to increases or decreases in contractile activity. Most mutations of troponin that cause hypertrophic cardiomyopathy increase the activity of cardiac muscle fibers. In at least some cases these mutants stabilize the active state of regulated actin. In contrast, phosphorylation of troponin I at residues 43, 45, and 144 inhibits muscle contractility. T...
متن کاملCa2+ and ionic strength dependencies of S1-ADP binding to actin-tropomyosin-troponin: regulatory implications.
Skeletal and cardiac muscle contraction are inhibited by the actin-associated complex of tropomyosin-troponin. Binding of Ca(2+) to troponin or binding of ATP-free myosin to actin reverses this inhibition. Ca(2+) and ATP-free myosin stabilize different tropomyosin-actin structural arrangements. The position of tropomyosin on actin affects the binding of ATP-free myosin to actin but does not gre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 43 48 شماره
صفحات -
تاریخ انتشار 2004